RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2020, том 25, выпуск 6, страницы 674–688 (Mi rcd1090)

Эта публикация цитируется в 1 статье

Nonequilibrium Statistical Mechanics of Weakly Ergodic Systems

Valery V. Kozlov

Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, 119991 Moscow, Russia

Аннотация: The properties of the Gibbs ensembles of Hamiltonian systems describing the motion along geodesics on a compact configuration manifold are discussed.We introduce weakly ergodic systems for which the time average of functions on the configuration space is constant almost everywhere. Usual ergodic systems are, of course, weakly ergodic, but the converse is not true. A range of questions concerning the equalization of the density and the temperature of a Gibbs ensemble as time increases indefinitely are considered. In addition, the weak ergodicity of a billiard in a rectangular parallelepiped with a partition wall is established.

Ключевые слова: Hamiltonian system, Liouville and Gibbs measures, Gibbs ensemble, weak ergodicity, mixing, billiard in a polytope.

MSC: 82C03, 82C23, 82C40

Поступила в редакцию: 21.09.2020
Принята в печать: 27.10.2020

Язык публикации: английский

DOI: 10.1134/S1560354720060118



Реферативные базы данных:


© МИАН, 2024