RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2021, том 26, выпуск 1, страницы 39–60 (Mi rcd1101)

Эта публикация цитируется в 7 статьях

Parametric Stability of a Charged Pendulum with an Oscillating Suspension Point

Gerson Cruz Araujoa, Hildeberto E. Cabralb

a Departamento de Matemática, Universidade Federal de Sergipe, 49100-000 Sao Cristovao, SE, Brazil
b Departamento de Matemática, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil

Аннотация: We consider a planar pendulum with an oscillating suspension point and with the bob carrying an electric charge $q$. The pendulum oscillates above a fixed point with a charge $Q.$ The dynamics is studied as a system in the small parameter $\epsilon$ given by the amplitude of the suspension point. The system depends on two other parameters, $\alpha$ and $\beta,$ the first related to the frequency of the oscillation of the suspension point and the second being the ratio of charges. We study the parametric stability of the linearly stable equilibria and use the Deprit - Hori method to construct the boundary surfaces of the stability/instability regions.

Ключевые слова: charged pendulum, parametric stability, boundary surfaces of stability, Hamiltonian system.

MSC: 37N05, 70H14, 70J40, 70J25

Поступила в редакцию: 13.09.2020
Принята в печать: 14.12.2020

Язык публикации: английский

DOI: 10.1134/S1560354721010032



Реферативные базы данных:


© МИАН, 2024