RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2021, том 26, выпуск 3, страницы 236–257 (Mi rcd1113)

Эта публикация цитируется в 2 статьях

Compactness and Index of Ordinary Central Configurations for the Curved $N$-Body Problem

Shuqiang Zhu

School of Economic Mathematics, Southwestern University of Finance and Economics, 611130 Chengdu, China

Аннотация: For the curved $n$-body problem, we show that the set of ordinary central configurations is away from singular configurations in $\mathbb{H}^3$ with positive momentum of inertia, and away from a subset of singular configurations in $\mathbb{S}^3$. We also show that each of the $n!/2$ geodesic ordinary central configurations for $n$ masses has Morse index $n-2$. Then we get a direct corollary that there are at least $\frac{(3n-4)(n-1)!}{2}$ ordinary central configurations for given $n$ masses if all ordinary central configurations of these masses are nondegenerate.

Ключевые слова: curved $n$-body problem, ordinary central configurations, geodesic configurations, Morse index, compactness, relative equilibrium, hyperbolic relative equilibrium.

MSC: 70F15, 70K42, 34C40

Поступила в редакцию: 16.09.2020
Принята в печать: 22.01.2021

Язык публикации: английский

DOI: 10.1134/S1560354721030035



Реферативные базы данных:


© МИАН, 2025