Аннотация:
A dynamical system with a cosymmetry is considered. V. I. Yudovich showed that
a noncosymmetric equilibrium of such a system under the conditions of the general position
is a member of a one-parameter family. In this paper, it is assumed that the equilibrium is
cosymmetric, and the linearization matrix of the cosymmetry is nondegenerate. It is shown that,
in the case of an odd-dimensional dynamical system, the equilibrium is also nonisolated and
belongs to a one-parameter family of equilibria. In the even-dimensional case, the cosymmetric
equilibrium is, generally speaking, isolated. The Lyapunov – Schmidt method is used to study
bifurcations in the neighborhood of the cosymmetric equilibrium when the linearization matrix
has a double kernel. The dynamical system and its cosymmetry depend on a real parameter.
We describe scenarios of branching for families of noncosymmetric equilibria.