RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2021, том 26, выпуск 5, страницы 482–504 (Mi rcd1128)

Эта публикация цитируется в 2 статьях

Special Issue: 200th birthday of Hermann von Helmholtz

Something Old, Something New: Three Point Vortices on the Plane

M. A. Stremler

Department of Biomedical Engineering & Mechanics, Virginia Tech, VA 24061 Blacksburg, USA

Аннотация: The classic problem of three point vortex motion on the plane is revisited by using the interior angles of the vortex triangle, $\theta_{j}$, $j=1,2,3$, as the key system variables instead of the lengths of the triangle sides, $s_j$, as has been used classically. Similar to the classic approach, the relative vortex motion can be represented in a phase space, with the topology of the level curves characterizing the motion. In contrast to the classic approach, the alternate formulation gives a compact, consistent phase space representation and facilitates comparisons of vortex motion in a co-moving frame. This alternate formulation is used to explore the vortex behavior in the two canonical cases of equal vortex strength magnitudes, $\Gamma_{1} = \Gamma_{2} = \Gamma_{3}$ and $\Gamma_{1} = \Gamma_{2} = -\Gamma_{3}$.

Ключевые слова: vortex dynamics, point vortices, three-vortex problem, potential flow.

MSC: 01-02, 37E35, 70F07, 70H06, 76B47, 76-03

Поступила в редакцию: 21.06.2021
Принята в печать: 18.08.2021

Язык публикации: английский

DOI: 10.1134/S1560354721050038



Реферативные базы данных:


© МИАН, 2024