RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2013, том 18, выпуск 3, страницы 261–276 (Mi rcd113)

Эта публикация цитируется в 9 статьях

Normal Forms, Stability and Splitting of Invariant Manifolds II. Finitely Differentiable Hamiltonians

Abed Bounemoura

Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193, Bellaterra, Barcelona, Spain

Аннотация: This paper is a sequel to "Normal forms, stability and splitting of invariant manifolds I. Gevrey Hamiltonians", in which we gave a new construction of resonant normal forms with an exponentially small remainder for near-integrable Gevrey Hamiltonians at a quasiperiodic frequency, using a method of periodic approximations. In this second part we focus on finitely differentiable Hamiltonians, and we derive normal forms with a polynomially small remainder. As applications, we obtain a polynomially large upper bound on the stability time for the evolution of the action variables and a polynomially small upper bound on the splitting of invariant manifolds for hyperbolic tori.

Ключевые слова: perturbation of integrable Hamiltonian systems, normal forms, splitting of invariant manifolds.

MSC: 37J25, 37J40

Поступила в редакцию: 06.12.2012
Принята в печать: 08.04.2013

Язык публикации: английский

DOI: 10.1134/S1560354713030052



Реферативные базы данных:


© МИАН, 2024