RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2021, том 26, выпуск 6, страницы 647–657 (Mi rcd1136)

Эта публикация цитируется в 4 статьях

Special Issue: 200th birthday of Hermann von Helmholtz

Integrals of Circulatory Systems Which are Quadratic in Momenta

Valery V. Kozlovab

a P.G. Demidov Yaroslavl State University, ul. Sovetskaya 14, 150003 Yaroslavl, Russia
b Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, 119991 Moscow, Russia

Аннотация: This paper addresses the problem of conditions for the existence of conservation laws (first integrals) of circulatory systems which are quadratic in velocities (momenta), when the external forces are nonpotential. Under some conditions the equations of motion are reduced to Hamiltonian form with some symplectic structure and the role of the Hamiltonian is played by a quadratic integral. In some cases the equations are reduced to a conformally Hamiltonian rather than Hamiltonian form. The existence of a quadratic integral and its properties allow conclusions to be drawn on the stability of equilibrium positions of circulatory systems.

Ключевые слова: circulatory system, polynomial integrals, Hamiltonian system, property of being conformally Hamiltonian, indices of inertia, asymptotic trajectories, Ziegler’s pendulum.

MSC: 37N05

Поступила в редакцию: 21.09.2021
Принята в печать: 27.10.2021

Язык публикации: английский

DOI: 10.1134/S1560354721060046



Реферативные базы данных:


© МИАН, 2024