RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2021, том 26, выпуск 6, страницы 700–716 (Mi rcd1140)

Эта публикация цитируется в 2 статьях

Regular Papers

Classification of Perturbations of Diophantine $\mathbb Z^m$ Actions on Tori of Arbitrary Dimension

Boris Petković

KTH Royal Institute of Technology, 100 44 Stockholm, Sweden

Аннотация: We generalize results of Moser [17] on the circle to $\mathbb{T}^d$: we show that a smooth sufficiently small perturbation of a $\mathbb Z^m$ action, $m \geqslant 2$, on the torus $\mathbb{T}^d$ by simultaneously Diophantine translations, is smoothly conjugate to the unperturbed action under a natural condition on the rotation sets of diffeomorphisms isotopic to identity and we answer the question Moser posed in [17] by proving the existence of a continuum of $m$-tuples of simultaneously Diophantine vectors such that every element of the induced $\mathbb Z^m$ action is Liouville.

Ключевые слова: KAM theory, simultaneously Diophantine translations, local rigidity, simultaneously Diophantine approximations.

MSC: 37C05, 37C55, 37C85, 37F50

Поступила в редакцию: 11.11.2020
Принята в печать: 23.07.2021

Язык публикации: английский

DOI: 10.1134/S1560354721060083



Реферативные базы данных:


© МИАН, 2024