RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2021, том 26, выпуск 6, страницы 742–755 (Mi rcd1143)

Эта публикация цитируется в 1 статье

Regular Papers

Strongly Reversible Flows on Connected Manifolds

Khadija Ben Rejeb

University of Sousse, Higher School of Sciences and Technologie of Hammam Sousse, Lamine Abassi, Hammam-Sousse ul., 4011 Sousse, Tunisia

Аннотация: Let $G = \{h_t \ | \ t \in \mathbb R\}$ be a flow of homeomorphisms of a connected $n$-manifold and let $L(G)$ be its limit set. The flow $G$ is said to be strongly reversed by a reflection $R$ if $h_{-t} = R h_t R$ for all $t \in \mathbb R$. In this paper, we study the dynamics of positively equicontinuous strongly reversible flows. If $L(G)$ is nonempty, we discuss the existence of symmetric periodic orbits, and for $n=3$ we prove that such flows must be periodic. If $L(G)$ is empty, we show that $G$ positively equicontinuous implies $G$ strongly reversible and $G$ strongly reversible implies $G$ parallelizable with global section the fixed point set $Fix(R)$.

Ключевые слова: strongly reversible, flow of homeomorphisms, positively equicontinuous, periodic orbit, parallelizable, limit set.

MSC: 37B05, 57S05, 57S10, 54H20, 37B20

Поступила в редакцию: 01.02.2021
Принята в печать: 13.08.2021

Язык публикации: английский

DOI: 10.1134/S1560354721060113



Реферативные базы данных:


© МИАН, 2025