RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2013, том 18, выпуск 4, страницы 329–343 (Mi rcd115)

Эта публикация цитируется в 27 статьях

The Euler–Jacobi–Lie Integrability Theorem

Valery V. Kozlov

V. A. Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Аннотация: This paper addresses a class of problems associated with the conditions for exact integrability of systems of ordinary differential equations expressed in terms of the properties of tensor invariants. The general theorem of integrability of the system of $n$ differential equations is proved, which admits $n-2$ independent symmetry fields and an invariant volume $n$-form (integral invariant). General results are applied to the study of steady motions of a continuum with infinite conductivity.

Ключевые слова: symmetry field, integral invariant, nilpotent group, magnetic hydrodynamics.

MSC: 34C14

Поступила в редакцию: 05.07.2012
Принята в печать: 30.08.2012

Язык публикации: английский

DOI: 10.1134/S1560354713040011



Реферативные базы данных:


© МИАН, 2024