RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2022, том 27, выпуск 1, страницы 65–76 (Mi rcd1153)

Эта публикация цитируется в 3 статьях

The Spherical Kapitza – Whitney Pendulum

Ivan Yu. Polekhin

Steklov Mathematical Institute of the Russian Academy of Sciences, ul. Gubkina 8, 119991 Moscow, Russia

Аннотация: In this paper we study the global dynamics of the inverted spherical pendulum with a vertically rapidly vibrating suspension point in the presence of an external horizontal periodic force field. We do not assume that this force field is weak or rapidly oscillating. Provided that the period of the vertical motion and the period of the horizontal force are commensurate, we prove that there always exists a nonfalling periodic solution, i. e., there exists an initial condition such that, along the corresponding solution, the rod of the pendulum always remains above the horizontal plane passing through the pivot point. We also show numerically that there exists an asymptotically stable nonfalling solution for a wide range of parameters of the system.

Ключевые слова: forced oscillations, Kapitza pendulum, Whitney pendulum, stabilization, vibrations.

MSC: 34C29, 70K65, 34C25

Поступила в редакцию: 25.05.2021
Принята в печать: 20.12.2021

Язык публикации: английский

DOI: 10.1134/S1560354722010075



Реферативные базы данных:


© МИАН, 2024