RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2022, том 27, выпуск 3, страницы 333–351 (Mi rcd1168)

Эта публикация цитируется в 1 статье

Alexey Borisov Memorial Volume

Möbius Fluid Dynamics on the Unitary Groups

Daniela Emmanuelea, Marcos Salvaib, Francisco Vittonea

a Universidad Nacional de Rosario, Av. Pellegrini 250, 2000 Rosario, Argentina
b FaMAF, Universidad Nacional de Córdoba; CIEM, CONICET, Ciudad Universitaria, 5000 Córdoba, Argentina

Аннотация: We study the nonrigid dynamics induced by the standard birational actions of the split unitary groups $G=O_{o}\left( n,n\right) $, $SU\left( n,n\right) $ and $Sp\left( n,n\right) $ on the compact classical Lie groups $M=SO_{n}$, $U_{n}$ and $Sp_{n}$, respectively. More precisely, we study the geometry of $G$ endowed with the kinetic energy metric associated with the action of $G$ on $M,$ assuming that $M$ carries its canonical bi-invariant Riemannian metric and has initially a homogeneous distribution of mass. By the least action principle, force-free motions (thought of as curves in $G$) correspond to geodesics of $G$. The geodesic equation may be understood as an inviscid Burgers equation with Möbius constraints. We prove that the kinetic energy metric on $G$ is not complete and in particular not invariant, find symmetries and totally geodesic submanifolds of $G$ and address the question under which conditions geodesics of rigid motions are geodesics of $G$. Besides, we study equivalences with the dynamics of conformal and projective motions of the sphere in low dimensions.

Ключевые слова: force-free motion, kinetic energy metric, nonrigid dynamics, unitary group, split unitary group, Möbius action, maximal isotropic subspace, inviscid Burgers equation.

MSC: 22F50, 53C22, 58D19, 70K25, 70G65, 76M60

Поступила в редакцию: 23.04.2021
Принята в печать: 17.03.2022

Язык публикации: английский

DOI: 10.1134/S1560354722030054



Реферативные базы данных:


© МИАН, 2024