RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2022, том 27, выпуск 4, страницы 409–423 (Mi rcd1172)

Эта публикация цитируется в 2 статьях

Alexey Borisov Memorial Volume

On Some Aspects of the Dynamics of a Ball in a Rotating Surface of Revolution and of the Kasamawashi Art

Francesco Fassòa, Nicola Sansonettob

a Dipartimento di Matematica “Tullio Levi-Civita”, Università degli Studi di Padova, Via Trieste 63, 35121 Padova, Italy
b Dipartimento di Informatica, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy

Аннотация: We study some aspects of the dynamics of the nonholonomic system formed by a heavy homogeneous ball constrained to roll without sliding on a steadily rotating surface of revolution. First, in the case in which the figure axis of the surface is vertical (and hence the system is $\textrm{SO(3)}\times\textrm{SO(2)}$-symmetric) and the surface has a (nondegenerate) maximum at its vertex, we show the existence of motions asymptotic to the vertex and rule out the possibility of blowup. This is done by passing to the 5-dimensional $\textrm{SO(3)}$-reduced system. The $\textrm{SO(3)}$-symmetry persists when the figure axis of the surface is inclined with respect to the vertical — and the system can be viewed as a simple model for the Japanese kasamawashi (turning umbrella) performance art — and in that case we study the (stability of the) equilibria of the 5-dimensional reduced system.

Ключевые слова: nonholonomic mechanical systems with symmetry, rolling rigid bodies, relative equilibria, kasamawashi.

MSC: 37J60, 70E18, 70F25, 70E50

Поступила в редакцию: 11.01.2022
Принята в печать: 22.04.2022

Язык публикации: английский

DOI: 10.1134/S1560354722040025



Реферативные базы данных:


© МИАН, 2024