RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2022, том 27, выпуск 4, страницы 424–442 (Mi rcd1173)

Эта публикация цитируется в 3 статьях

Alexey Borisov Memorial Volume

Spherical and Planar Ball Bearings — Nonholonomic Systems with Invariant Measures

Vladimir Dragovićab, Borislav Gajića, Bozidar Jovanovića

a Mathematical Institute, Serbian Academy of Sciences and Arts, Kneza Mihaila 36, 11001 Belgrade, Serbia
b Department of Mathematical Sciences, The University of Texas at Dallas, 800 West Campbell Road, 75080 Richardson TX, USA

Аннотация: We first construct nonholonomic systems of $n$ homogeneous balls $\mathbf B_1,\dots,\mathbf B_n$ with centers $O_1,\ldots,O_n$ and with the same radius $r$ that are rolling without slipping around a fixed sphere $\mathbf S_0$ with center $O$ and radius $R$. In addition, it is assumed that a dynamically nonsymmetric sphere $\mathbf S$ of radius $R+2r$ and the center that coincides with the center $O$ of the fixed sphere $\mathbf S_0$ rolls without slipping over the moving balls $\mathbf B_1,\dots,\mathbf B_n$. We prove that these systems possess an invariant measure. As the second task, we consider the limit, when the radius $R$ tends to infinity. We obtain a corresponding planar problem consisting of $n$ homogeneous balls $\mathbf B_1,\dots,\mathbf B_n$ with centers $O_1,\ldots,O_n$ and the same radius $r$ that are rolling without slipping over a fixed plane $\Sigma_0$, and a moving plane $\Sigma$ that moves without slipping over the homogeneous balls. We prove that this system possesses an invariant measure and that it is integrable in quadratures according to the Euler – Jacobi theorem.

Ключевые слова: nonholonimic dynamics, rolling without slipping, invariant measure, integrability.

MSC: 37J60, 37J35, 70E40, 70F25

Поступила в редакцию: 02.11.2022
Принята в печать: 02.05.2022

Язык публикации: английский

DOI: 10.1134/S1560354722040037



Реферативные базы данных:


© МИАН, 2024