RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2022, том 27, выпуск 4, страницы 443–459 (Mi rcd1174)

Эта публикация цитируется в 1 статье

Alexey Borisov Memorial Volume

The Harmonic Lagrange Top and the Confluent Heun Equation

Sean R. Dawson, Holger R. Dullin, Diana M.H. Nguyen

School of Mathematics and Statistics, University of Sydney, 2006 New South Wales, Australia

Аннотация: The harmonic Lagrange top is the Lagrange top plus a quadratic (harmonic) potential term. We describe the top in the space fixed frame using a global description with a Poisson structure on $T^*S^3$. This global description naturally leads to a rational parametrisation of the set of critical values of the energy-momentum map. We show that there are 4 different topological types for generic parameter values. The quantum mechanics of the harmonic Lagrange top is described by the most general confluent Heun equation (also known as the generalised spheroidal wave equation). We derive formulas for an infinite pentadiagonal symmetric matrix representing the Hamiltonian from which the spectrum is computed.

Ключевые слова: symmetric rigid body, Lagrange top, Hamiltonian Hopf bifurcation, quantisation, confluent Heun equation.

MSC: 70E17, 81Q99

Поступила в редакцию: 01.11.2021
Принята в печать: 13.06.2022

Язык публикации: английский

DOI: 10.1134/S1560354722040049



Реферативные базы данных:


© МИАН, 2024