RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2022, том 27, выпуск 4, страницы 477–491 (Mi rcd1176)

Alexey Borisov Memorial Volume

The Dynamical Core of a Homoclinic Orbit

V. Mendoza

Instituto de Matemática e Computacão, Universidade Federal de Itajubá, Av. BPS 1303, Bairro Pinheirinho, CEP 37500-903 Itajubá, Brazil

Аннотация: The complexity of a dynamical system exhibiting a homoclinic orbit is given by its dynamical core which, due to Cantwell, Conlon and Fenley, is a set uniquely determined in the isotopy class, up to a topological conjugacy, of the end-periodic map relative to that orbit. In this work we prove that a sufficient condition to determine the dynamical core of a homoclinic orbit of a Smale diffeomorphism on the 2-disk is the non-existence of bigons relative to this orbit. Moreover, we propose a pruning method for eliminating bigons that can be used to find a Smale map without bigons and hence for finding the dynamical core.

Ключевые слова: Homoclinic orbits, dynamical core, Smale horseshoe, pruning theory.

MSC: 37E30, 37E15, 37C29, 37B10, 37D20

Поступила в редакцию: 28.02.2022
Принята в печать: 08.04.2022

Язык публикации: английский

DOI: 10.1134/S1560354722040062



Реферативные базы данных:


© МИАН, 2024