RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2022, том 27, выпуск 6, страницы 647–667 (Mi rcd1185)

Эта публикация цитируется в 1 статье

Alexey Borisov Memorial Volume

Antisymmetric Diffeomorphisms and Bifurcations of a Double Conservative Hénon Map

Sergey V. Gonchenkoab, Klim A. Safonovb, Nikita G. Zelentsova

a Mathematical Center “Mathematics of Future Technologies”, Lobachevsky State University of Nizhny Novgorod, pr. Gagarin 23, 603022 Nizhny Novgorod, Russia
b Laboratory of Dynamical Systems and Applications, National Research University Higher School of Economics, ul. Bolshaya Pecherskaya 25/12, 603155 Nizhny Novgorod, Russia

Аннотация: We propose a new method for constructing multidimensional reversible maps by only two input data: a diffeomorphism $T_1$ and an involution $h$, i.e., a map (diffeomorphism) such that $h^2 = Id$. We construct the desired reversible map $T$ in the form $T = T_1\circ T_2$, where $T_2 = h\circ T_1^{-1}\circ h$. We also discuss how this method can be used to construct normal forms of Poincaré maps near mutually symmetric pairs of orbits of homoclinic or heteroclinic tangencies in reversible maps. One of such normal forms, as we show, is a two-dimensional double conservative Hénon map $H$ of the form $\bar x = M + cx - y^2; \ y = M + c\bar y - \bar x^2$. We construct this map by the proposed method for the case when $T_1$ is the standard Hénon map and the involution $h$ is $h: (x,y) \to (y,x)$. For the map $H$, we study bifurcations of fixed and period-2 points, among which there are both standard bifurcations (parabolic, period-doubling and pitchfork) and singular ones (during transition through $c=0$).

Ключевые слова: reversible diffeomorphism, parabolic bifurcation, period-doubling bifurcation.

MSC: 37G10,37G25

Поступила в редакцию: 21.09.2022
Принята в печать: 24.10.2022

Язык публикации: английский

DOI: 10.1134/S1560354722060041



Реферативные базы данных:


© МИАН, 2024