RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2023, том 28, выпуск 1, страницы 5–13 (Mi rcd1192)

Quasiperiodic Version of Gordon’s Theorem

Sergey V. Bolotin, Dmitry V. Treschev

Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, 119991 Moscow, Russia

Аннотация: We consider Hamiltonian systems possessing families of nonresonant invariant tori whose frequencies are all collinear. Then under certain conditions the frequencies depend on energy only. This is a generalization of the well-known Gordon’s theorem about periodic solutions of Hamiltonian systems. While the proof of Gordon’s theorem uses Hamilton’s principle, our result is based on Percival’s variational principle. This work was motivated by the problem of isochronicity in Hamiltonian systems.

Ключевые слова: isochronicity, superintegrability, Hamiltonian systems, variational pronciples.

MSC: 37J06, 37J35, 70H33

Поступила в редакцию: 21.11.2022
Принята в печать: 24.12.2022

Язык публикации: английский

DOI: 10.1134/S1560354723010021



Реферативные базы данных:


© МИАН, 2024