RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2023, том 28, выпуск 1, страницы 44–61 (Mi rcd1194)

Эта публикация цитируется в 1 статье

Integrable Systems Associated to the Filtrations of Lie Algebras

Bozidar Jovanovića, Tijana Šukilovićb, Srdjan Vukmirovićb

a Mathematical Institute, Serbian Academy of Sciences and Arts, Kneza Mihaila 36, 11000 Belgrade, Serbia
b Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia

Аннотация: In 1983 Bogoyavlenski conjectured that, if the Euler equations on a Lie algebra $\mathfrak{g}_0$ are integrable, then their certain extensions to semisimple lie algebras $\mathfrak{g}$ related to the filtrations of Lie algebras $\mathfrak{g}_0\subset\mathfrak{g}_1\subset\mathfrak{g}_2\dots\subset\mathfrak{g}_{n-1}\subset \mathfrak{g}_n=\mathfrak{g}$ are integrable as well. In particular, by taking $\mathfrak{g}_0=\{0\}$ and natural filtrations of ${\mathfrak{so}}(n)$ and $\mathfrak{u}(n)$, we have Gel’fand – Cetlin integrable systems. We prove the conjecture for filtrations of compact Lie algebras $\mathfrak{g}$: the system is integrable in a noncommutative sense by means of polynomial integrals. Various constructions of complete commutative polynomial integrals for the system are also given.

Ключевые слова: noncommutative integrability, invariant polynomials, Gel’fand – Cetlin systems.

MSC: 37J35, 17B63, 17B80, 53D20

Поступила в редакцию: 29.09.2022
Принята в печать: 11.01.2023

Язык публикации: английский

DOI: 10.1134/S1560354723010045



Реферативные базы данных:


© МИАН, 2024