RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2023, том 28, выпуск 1, страницы 107–130 (Mi rcd1197)

Эта публикация цитируется в 2 статьях

Roller Racer with Varying Gyrostatic Momentum: Acceleration Criterion and Strange Attractors

Ivan A. Bizyaeva, Ivan S. Mamaevb

a Ural Mathematical Center, Udmurt State University, ul. Universitetskaya 1, 426034 Izhevsk, Russia
b Kalashnikov Izhevsk State Technical University, ul. Studencheskaya 7, 426069 Izhevsk, Russia

Аннотация: In this paper we investigate a nonholonomic system with parametric excitation, a Roller Racer with variable gyrostatic momentum. We examine in detail the problem of the existence of regimes with unbounded growth of energy (nonconservative Fermi acceleration). We find a criterion for the existence of trajectories for which one of the velocity components increases withound bound and has asymptotics $t^{1/3}$. In addition, we show that the problem under consideration reduces to analysis of a three-dimensional Poincaré map. This map exhibits both regular attractors (a fixed point, a limit cycle and a torus) and strange attractors.

Ключевые слова: nonholonomic mechanics, Roller Racer, Andronov – Hopf bifurcation, stability, central manifold, unbounded speedup, Poincaré map, limit cycle, strange attractor.

MSC: 37J60, 34A34

Поступила в редакцию: 07.11.2022
Принята в печать: 27.12.2022

Язык публикации: английский

DOI: 10.1134/S1560354723010070



Реферативные базы данных:


© МИАН, 2024