RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2013, том 18, выпуск 4, страницы 394–424 (Mi rcd120)

Эта публикация цитируется в 10 статьях

On a Class of Integrable Systems with a Quartic First Integral

Galliano Valentabc

a Laboratoire de Physique Théorique et des Hautes Energies, Unité associée au CNRS UMR 7589, 2 Place Jussieu, 75251 Paris Cedex 05, France
b Aix-Marseille Université, CNRS, CPT, UMR 7332, 13288 Marseille, France
c Université de Toulon, CNRS, CPT, UMR 7332, 83957 La Garde, France

Аннотация: We generalize, to some extent, the results on integrable geodesic flows on two dimensional manifolds with a quartic first integral in the framework laid down by Selivanova and Hadeler. The local structure is first determined by a direct integration of the differential system which expresses the conservation of the quartic observable and is seen to involve a finite number of parameters. The global structure is studied in some detail and leads to a class of models on the manifolds $\mathbb{S}^2$, $\mathbb{H}^2$ or $\mathbb{R}^2$. As special cases we recover Kovalevskaya’s integrable system and a generalization of it due to Goryachev.

Ключевые слова: integrable Hamiltonian systems, quartic polynomial integral, manifolds for Riemannian metrics.

MSC: 70H06, 70H20, 58D17

Поступила в редакцию: 22.04.2013
Принята в печать: 28.06.2013

Язык публикации: английский

DOI: 10.1134/S1560354713040060



Реферативные базы данных:


© МИАН, 2024