RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2023, том 28, выпуск 3, страницы 309–320 (Mi rcd1207)

Эта публикация цитируется в 1 статье

A Note on the Weighted Yamabe Flow

Theodore Yu. Popelensky

Moscow Center for Fundamental and Applied Mathematics, Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia

Аннотация: For two dimensional surfaces (smooth) Ricci and Yamabe flows are equivalent. In 2003, Chow and Luo developed the theory of combinatorial Ricci flow for circle packing metrics on closed triangulated surfaces. In 2004, Luo developed a theory of discrete Yamabe flow for closed triangulated surfaces. He investigated the formation of singularities and convergence to a metric of constant curvature.
In this note we develop the theory of a naïve discrete Ricci flow and its modification — the so-called weighted Ricci flow. We prove that this flow has a rich family of first integrals and is equivalent to a certain modification of Luo’s discrete Yamabe flow. We investigate the types of singularities of solutions for these flows and discuss convergence to a metric of weighted constant curvature.

Ключевые слова: combinatorial Yamabe flow, combinatorial Ricci flow, weighted flow.

MSC: 52C26

Поступила в редакцию: 27.09.2022
Принята в печать: 17.04.2023

Язык публикации: английский

DOI: 10.1134/S1560354723030048



Реферативные базы данных:


© МИАН, 2024