RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2023, том 28, выпуск 4-5, страницы 425–446 (Mi rcd1214)

Special Issue: On the 80th birthday of professor A. Chenciner

Aubry Set on Infinite Cyclic Coverings

Albert Fathia, Pierre Pageaultb

a Georgia Institute of Technology & ENS de Lyon (Emeritus), School of Mathematics, 30332 Atlanta GA, USA
b Lycée Etienne Mimard, 32 Rue Etienne Mimard, 42000 Saint-Étienne, France

Аннотация: In this paper, we study the projected Aubry set of a lift of a Tonelli Lagrangian $L$ defined on the tangent bundle of a compact manifold $M$ to an infinite cyclic covering of $M$. Most of weak KAM and Aubry – Mather theory can be done in this setting. We give a necessary and sufficient condition for the emptiness of the projected Aubry set of the lifted Lagrangian involving both Mather minimizing measures and Mather classes of $L$. Finally, we give Mañè examples on the two-dimensional torus showing that our results do not necessarily hold when the cover is not infinite cyclic.

Ключевые слова: Aubry – Mather theory, weak KAM theory, infinite cyclic coverings.

MSC: 37J50

Поступила в редакцию: 25.01.2023
Принята в печать: 12.05.2023

Язык публикации: английский

DOI: 10.1134/S1560354723520015



© МИАН, 2024