RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2023, том 28, выпуск 4-5, страницы 468–497 (Mi rcd1216)

Special Issue: On the 80th birthday of professor A. Chenciner

Emergence of Strange Attractors from Singularities

José Angel Rodríguez

Departamento de Matemáticas, Universidad de Oviedo, c/ Leopoldo Calvo Sotelo 18, 33007 Oviedo, Spain

Аннотация: This paper is a summary of results that prove the abundance of one-dimensional strange attractors near a Shil'nikov configuration, as well as the presence of these configurations in generic unfoldings of singularities in $\mathbb{R}^{3}$ of minimal codimension. Finding these singularities in families of vector fields is analytically possible and thus provides a tractable criterion for the existence of chaotic dynamics. Alternative scenarios for the possible abundance of two-dimensional attractors in higher dimension are also presented. The role of Shil'nikov configuration is now played by a certain type of generalised tangency which should occur for families of vector fields $X_{\mu }$ unfolding generically some low codimension singularity in $\mathbb{R}^{n}$ with $n\geqslant 4$.

Ключевые слова: Shil’nikov orbits, strange attractors, unfolding of a singularity, expanding baker maps, two-dimensional strange attractors.

MSC: 34C23, 37D05, 37D25, 37D45, 37G05, 37G10, 37G25

Поступила в редакцию: 21.02.2023
Принята в печать: 29.05.2023

Язык публикации: английский

DOI: 10.1134/S1560354723520040



© МИАН, 2024