RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2023, том 28, выпуск 4-5, страницы 781–804 (Mi rcd1233)

Special Issue: On the 80th birthday of professor A. Chenciner

Normalization Flow

Dmitry V. Treschev

Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, 119991 Moscow, Russia

Аннотация: We propose a new approach to the theory of normal forms for Hamiltonian systems near a nonresonant elliptic singular point. We consider the space of all Hamiltonian functions with such an equilibrium position at the origin and construct a differential equation in this space. Solutions of this equation move Hamiltonian functions towards their normal forms. Shifts along the flow of this equation correspond to canonical coordinate changes. So, we have a continuous normalization procedure. The formal aspect of the theory presents no difficulties. As usual, the analytic aspect and the problems of convergence of series are nontrivial.

Ключевые слова: normal forms, Hamiltonian systems, small divisors.

MSC: 37J40, 34C20

Поступила в редакцию: 02.08.2023
Принята в печать: 08.09.2023

Язык публикации: английский

DOI: 10.1134/S1560354723040160



Реферативные базы данных:


© МИАН, 2024