Non-Integrable Sub-Riemannian Geodesic Flow on $J^{2}(\mathbb{R}^2,\mathbb{R})$
Alejandro Bravo-Doddoli Dept. of Mathematics, UCSC,
1156 High Street, 95064 Santa Cruz, CA
Аннотация:
The space of
$2$-jets of a real function of two real variables, denoted by
$J^2(\mathbb{R}^2,\mathbb{R})$, admits the structure of a metabelian Carnot group, so
$J^2(\mathbb{R}^2,\mathbb{R})$ has a normal abelian sub-group
$\mathbb{A}$. As any sub-Riemannian manifold,
$J^2(\mathbb{R}^2,\mathbb{R})$ has an associated Hamiltonian geodesic flow. The Hamiltonian action of
$\mathbb{A}$ on
$T^*J^2(\mathbb{R}^2,\mathbb{R})$ yields the reduced Hamiltonian
$H_{\mu}$ on $T^*\mathcal{H} \simeq T^*(J^2(\mathbb{R}^2,\mathbb{R})/\mathbb{A})$, where
$H_{\mu}$ is a two-dimensional Euclidean space. The paper is devoted to proving that the reduced Hamiltonian
$H_{\mu}$ is non-integrable by meromorphic functions for some values of
$\mu$. This result suggests the sub-Riemannian geodesic flow on
$J^{2}(\mathbb{R}^2,\mathbb{R})$ is not meromorphically integrable.
Ключевые слова:
Carnot group, Jet space, non-integrable system, sub-Riemannian geometry.
MSC: 53C17,
70H07,
53D25 Поступила в редакцию: 13.12.2022
Принята в печать: 04.08.2023
Язык публикации: английский
DOI:
10.1134/S1560354723060023