RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2023, том 28, выпуск 6, страницы 888–905 (Mi rcd1240)

Эта публикация цитируется в 1 статье

Stabilization of Steady Rotations of a Spherical Robot on a Vibrating Base Using Feedback

Alexander A. Kilina, Tatiana B. Ivanovab, Elena N. Pivovarovaa

a Ural Mathematical Center, Udmurt State University, ul. Universitetskaya 1, 426034 Izhevsk, Russia
b Kalashnikov Izhevsk State Technical University, ul. Studencheskaya 7, 426069 Izhevsk, Russia

Аннотация: This paper treats the problem of a spherical robot with an axisymmetric pendulum drive rolling without slipping on a vibrating plane. The main purpose of the paper is to investigate the stabilization of the upper vertical rotations of the pendulum using feedback (additional control action). For the chosen type of feedback, regions of asymptotic stability of the upper vertical rotations of the pendulum are constructed and possible bifurcations are analyzed. Special attention is also given to the question of the stability of periodic solutions arising as the vertical rotations lose stability.

Ключевые слова: spherical robot, vibration, feedback, stabilization, damped Mathieu equation.

MSC: 70E18, 37J60, 70E50, 34H15, 93D15

Поступила в редакцию: 21.08.2023
Принята в печать: 16.11.2023

Язык публикации: английский

DOI: 10.1134/S1560354723060060



© МИАН, 2024