RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2024, том 29, выпуск 1, страницы 6–24 (Mi rcd1242)

Special Issue: In Honor of Vladimir Belykh and Sergey Gonchenko Guest Editors: Alexey Kazakov, Vladimir Nekorkin, and Dmitry Turaev

On the Regularity of Invariant Foliations

Dmitry Turaev

Imperial College, SW7 2AZ London, UK

Аннотация: We show that the stable invariant foliation of codimension 1 near a zero-dimensional hyperbolic set of a $C^{\beta}$ map with $\beta>1$ is $C^{1+\varepsilon}$ with some $\varepsilon>0$. The result is applied to the restriction of higher regularity maps to normally hyperbolic manifolds. An application to the theory of the Newhouse phenomenon is discussed.

Ключевые слова: homoclinic tangency, thickness of Cantor set, invariant manifold

MSC: 37D10,37D05,37G25

Поступила в редакцию: 20.12.2023
Принята в печать: 09.12.2024

Язык публикации: английский

DOI: 10.1134/S1560354724010027



© МИАН, 2024