RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2024, том 29, выпуск 1, страницы 25–39 (Mi rcd1243)

Special Issue: In Honor of Vladimir Belykh and Sergey Gonchenko Guest Editors: Alexey Kazakov, Vladimir Nekorkin, and Dmitry Turaev

On Bifurcations of Symmetric Elliptic Orbits

Marina S. Gonchenko

Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain

Аннотация: We study bifurcations of symmetric elliptic fixed points in the case of p:q resonances with odd $q\geqslant 3$. We consider the case where the initial area-preserving map $\bar z =\lambda z + Q(z,z^*)$ possesses the central symmetry, i. e., is invariant under the change of variables $z\to -z$, $z^*\to -z^*$. We construct normal forms for such maps in the case $\lambda = e^{i 2\pi \frac{p}{q}}$, where $p$ and $q$ are mutually prime integer numbers, $p\leqslant q$ and $q$ is odd, and study local bifurcations of the fixed point $z=0$ in various settings. We prove the appearance of garlands consisting of four $q$-periodic orbits, two orbits are elliptic and two orbits are saddles, and describe the corresponding bifurcation diagrams for one- and two-parameter families. We also consider the case where the initial map is reversible and find conditions where nonsymmetric periodic orbits of the garlands are nonconservative ({contain} symmetric pairs of stable and unstable orbits as well as area-contracting and area-expanding saddles).

Ключевые слова: bifurcation, central symmetry, elliptic orbits, $p$:$q$ resonance

MSC: 37G05, 37G10

Поступила в редакцию: 11.11.2023
Принята в печать: 03.01.2024

Язык публикации: английский

DOI: 10.1134/S1560354724010039



© МИАН, 2024