RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2024, том 29, выпуск 1, страницы 40–64 (Mi rcd1244)

Special Issue: In Honor of Vladimir Belykh and Sergey Gonchenko Guest Editors: Alexey Kazakov, Vladimir Nekorkin, and Dmitry Turaev

Twin Heteroclinic Connections of Reversible Systems

Nikolay E. Kulagina, Lev M. Lermanb, Konstantin N. Trifonovbc

a Frumkin Institute of Phys. Chemistry and Electrochemistry of RAS, pr. Leninskiy 31, 119071 Moscow, Russia
b HSE University, ul. Bolshaya Pecherskaya 25/12, 603155 Nizhny Novgorod, Russia
c Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, 603950 Nizhny Novgorod, Russia

Аннотация: We examine smooth four-dimensional vector fields reversible under some smooth involution $L$ that has a smooth two-dimensional submanifold of fixed points. Our main interest here is in the orbit structure of such a system near two types of heteroclinic connections involving saddle-foci and heteroclinic orbits connecting them. In both cases we found families of symmetric periodic orbits, multi-round heteroclinic connections and countable families of homoclinic orbits of saddle-foci. All this suggests that the orbit structure near such connections is very complicated. A non-variational version of the stationary Swift – Hohenberg equation is considered, as an example,where such structure has been found numerically.

Ключевые слова: reversible, saddle-focus, heteroclinic, connection, periodic, multi-round

MSC: 34C23, 34C37, 37G40

Поступила в редакцию: 16.10.2023
Принята в печать: 12.01.2024

Язык публикации: английский

DOI: 10.1134/S1560354724010040



© МИАН, 2024