RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2024, том 29, выпуск 1, страницы 120–133 (Mi rcd1248)

Эта публикация цитируется в 2 статьях

Special Issue: In Honor of Vladimir Belykh and Sergey Gonchenko Guest Editors: Alexey Kazakov, Vladimir Nekorkin, and Dmitry Turaev

Chaos and Hyperchaos in Two Coupled Identical Hindmarsh – Rose Systems

Nataliya V. Stankevich, Andrey A. Bobrovskii, Natalya A. Shchegoleva

HSE University, ul. Bolshaya Pecherskaya 25/12, 603155 Nizhny Novgorod, Russia

Аннотация: The dynamics of two coupled neuron models, the Hindmarsh – Rose systems, are studied. Their interaction is simulated via a chemical coupling that is implemented with a sigmoid function. It is shown that the model may exhibit complex behavior: quasi- periodic, chaotic and hyperchaotic oscillations. A phenomenological scenario for the formation of hyperchaos associated with the appearance of a discrete Shilnikov attractor is described. It is shown that the formation of these attractors leads to the appearance of in-phase bursting oscillations.

Ключевые слова: neuron model, Hindmarsh – Rose system, chaos, hyperchaos, in-phase bursting

MSC: 65P20, 92B25

Поступила в редакцию: 28.04.2023
Принята в печать: 10.10.2023

Язык публикации: английский

DOI: 10.1134/S1560354723540031



© МИАН, 2024