RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2014, том 19, выпуск 2, страницы 198–213 (Mi rcd126)

Эта публикация цитируется в 43 статьях

The Dynamics of Nonholonomic Systems Consisting of a Spherical Shell with a Moving Rigid Body Inside

Ivan A. Bizyaeva, Alexey V. Borisovbcd, Ivan S. Mamaeva

a Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
b Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudny, Moscow Region, 141700 Russia
c A. A.Blagonravov Mechanical Engineering Research Institute of RAS, ul. Bardina 4, Moscow, 117334 Russia
d National Research Nuclear University “MEPhI”, Kashirskoe sh. 31, Moscow, 115409 Russia

Аннотация: In this paper we investigate two systems consisting of a spherical shell rolling without slipping on a plane and a moving rigid body fixed inside the shell by means of two different mechanisms. In the former case the rigid body is attached to the center of the ball on a spherical hinge. We show an isomorphism between the equations of motion for the inner body with those for the ball moving on a smooth plane. In the latter case the rigid body is fixed by means of a nonholonomic hinge. Equations of motion for this system have been obtained and new integrable cases found. A special feature of the set of tensor invariants of this system is that it leads to the Euler–Jacobi–Lie theorem, which is a new integration mechanism in nonholonomic mechanics. We also consider the problem of free motion of a bundle of two bodies connected by means of a nonholonomic hinge. For this system, integrable cases and various tensor invariants are found.

Ключевые слова: nonholonomic constraint, tensor invariants, isomorphism, nonholonomic hinge.

MSC: 70E18, 37J60, 37J35

Поступила в редакцию: 04.09.2013
Принята в печать: 31.10.2013

Язык публикации: английский

DOI: 10.1134/S156035471402004X



Реферативные базы данных:


© МИАН, 2024