RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2024, том 29, выпуск 4, страницы 677–715 (Mi rcd1275)

Эта публикация цитируется в 1 статье

Special Issue: 70 Years of KAM Theory (Issue Editors: Alessandra Celletti, Luigi Chierchia, and Dmitry Treschev)

Maximal Tori in Infinite-Dimensional Hamiltonian Systems: a Renormalisation Group Approach

Livia Corsi, Guido Gentile, Michela Procesi

Dipartimento di Matematica e Fisica, Università Roma Tre, 00146 Roma, Italy

Аннотация: We study the existence of infinite-dimensional invariant tori in a mechanical system of infinitely many rotators weakly interacting with each other. We consider explicitly interactions depending only on the angles, with the aim of discussing in a simple case the analyticity properties to be required on the perturbation of the integrable system in order to ensure the persistence of a large measure set of invariant tori with finite energy. The proof we provide of the persistence of the invariant tori implements the renormalisation group scheme based on the tree formalism, i. e., the graphical representation of the solutions of the equations of motion in terms of trees, which has been widely used in finite-dimensional problems. The method is very effectual and flexible: it naturally extends, once the functional setting has been fixed, to the infinite-dimensional case with only minor technical-natured adaptations.

Ключевые слова: KAM theory, infinite-dimensional Hamiltonian systems, renormalisation group

MSC: 37K55, 37K06

Поступила в редакцию: 15.03.2024
Принята в печать: 14.05.2024

Язык публикации: английский

DOI: 10.1134/S1560354724540025



© МИАН, 2024