RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2014, том 19, выпуск 2, страницы 226–244 (Mi rcd128)

Эта публикация цитируется в 7 статьях

Extensions of the Appelrot Classes for the Generalized Gyrostat in a Double Force Field

Mikhail P. Kharlamov

Russian Academy of National Economy and Public Administration, Volgograd branch, ul. Gagarina 8, Volgograd, 400131 Russia

Аннотация: For the integrable system on $e(3,2)$ found by Sokolov and Tsiganov we obtain explicit equations of some invariant 4-dimensional manifolds on which the induced systems are almost everywhere Hamiltonian with two degrees of freedom. These subsystems generalize the famous Appelrot classes of critical motions of the Kowalevski top. For each subsystem we point out a commutative pair of independent integrals, describe the sets of degeneration of the induced symplectic structure. With the help of the obtained invariant relations, for each subsystem we calculate the outer type of its points considered as critical points of the initial system with three degrees of freedom.

Ключевые слова: generalized two-field gyrostat, critical subsystems, Appelrot classes, invariant relations, types of critical points.

MSC: 70E05, 70E17, 37J15, 37J20

Поступила в редакцию: 05.09.2013
Принята в печать: 30.10.2013

Язык публикации: английский

DOI: 10.1134/S1560354714020063



Реферативные базы данных:


© МИАН, 2024