RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2024, том 29, выпуск 6, страницы 825–837 (Mi rcd1285)

Phase Portraits of the Equation $\ddot x + a x \dot x + b x^3=0$

Jaume Llibrea, Claudia Vallsb

a Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
b Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049–001 Lisboa, Portugal

Аннотация: The second-order differential equation $\ddot x + a x \dot x + b x^3=0$ with $a,b \in \mathbb{R}$ has been studied by several authors mainly due to its applications. Here, for the first time, we classify all its phase portraits according to its parameters $a$ and $b$. This classification is done in the Poincaré disc in order to control the orbits that escape or come from infinity. We prove that there are exactly six topologically different phase portraits in the Poincaré disc of the first-order differential system associated to the second-order differential equation. Additionally, we show that this system is always integrable, providing explicitly its first integrals.

Ключевые слова: second-order differential equation, Poincaré compactification, global phase portraits

MSC: 34A05, 34C05, 37C10

Поступила в редакцию: 22.02.2023
Принята в печать: 01.08.2024

Язык публикации: английский

DOI: 10.1134/S1560354724560053



© МИАН, 2025