RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2014, том 19, выпуск 2, страницы 251–265 (Mi rcd134)

Эта публикация цитируется в 6 статьях

The Classical KAM Theorem for Hamiltonian Systems via Rational Approximations

Abed Bounemouraa, Stéphane Fischlerb

a CNRS — CEREMADE, Université Paris Dauphine Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France IMCCE, Observatoire de Paris 77 avenue Denfert-Rochereau, 75014 Paris, France
b Laboratoire de mathématiques d’Orsay, Univ Paris Sud, 91405 Orsay Cedex, France

Аннотация: In this paper, we give a new proof of the classical KAM theorem on the persistence of an invariant quasi-periodic torus, whose frequency vector satisfies the Bruno–Rüssmann condition, in real-analytic non-degenerate Hamiltonian systems close to integrable. The proof, which uses rational approximations instead of small divisors estimates, is an adaptation to the Hamiltonian setting of the method we introduced in [4] for perturbations of constant vector fields on the torus.

Ключевые слова: perturbation of integrable Hamiltonian systems, KAM theory, Diophantine duality, periodic approximations.

MSC: 37J25, 37J40, 70H08, 70H09

Поступила в редакцию: 21.01.2014
Принята в печать: 11.03.2014

Язык публикации: английский

DOI: 10.1134/S1560354714020087



Реферативные базы данных:


© МИАН, 2024