RUS  ENG
Ïîëíàÿ âåðñèÿ
ÆÓÐÍÀËÛ // Regular and Chaotic Dynamics // Àðõèâ

Regul. Chaotic Dyn., 2014, òîì 19, âûïóñê 1, ñòðàíèöû 48–63 (Mi rcd140)

Ýòà ïóáëèêàöèÿ öèòèðóåòñÿ â 20 ñòàòüÿõ

Higher Painlevé Transcendents as Special Solutions of Some Nonlinear Integrable Hierarchies

Nikolay A. Kudryashov

Department of Applied Mathematics, National Research Nuclear University “MEPhI”, Kashirskoe sh. 31, Moscow, 115409 Russia

Àííîòàöèÿ: It is well known that the self-similar solutions of the Korteweg–de Vries equation and the modified Korteweg–de Vries equation are expressed via the solutions of the first and second Painlevé equations. In this paper we solve this problem for all equations from the Korteveg–de Vries, modified Korteweg–de Vries, Kaup–Kupershmidt, Caudrey–Dodd–Gibbon and Fordy–Gibbons hierarchies. We show that the self-similar solutions of equations corresponding to hierarchies mentioned above can be found by means of the general solutions of higher-order Painlevé hierarchies introduced more than ten years ago.

Êëþ÷åâûå ñëîâà: Painlevé equation, Painlevé transcendent, Korteweg–de Vries hierarchy, modified Korteveg–de Vries hierarchy, Kaup–Kupershmidt hierarchy, Caudrey–Dodd–Cibbon hierarchy.

MSC: 35Q51, 35Q53, 37K15

Ïîñòóïèëà â ðåäàêöèþ: 02.12.2013
Ïðèíÿòà â ïå÷àòü: 22.12.2013

ßçûê ïóáëèêàöèè: àíãëèéñêèé

DOI: 10.1134/S1560354714010043



Ðåôåðàòèâíûå áàçû äàííûõ:


© ÌÈÀÍ, 2024