RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2013, том 18, выпуск 6, страницы 656–673 (Mi rcd154)

Эта публикация цитируется в 2 статьях

Minimizing Configurations and Hamilton–Jacobi Equations of Homogeneous $N$-body Problems

Ezequiel Maderna

Centro de Matematica, Universidad de la Republica, Montevideo, Uruguay

Аннотация: For $N$-body problems with homogeneous potentials we define a special class of central configurations related with the reduction of homotheties in the study of homogeneous weak KAM solutions. For potentials in $1/r^\alpha$ with $\alpha\in (0,2)$ we prove the existence of homogeneous weak KAM solutions. We show that such solutions are related to viscosity solutions of another Hamilton–Jacobi equation in the sphere of normal configurations. As an application we prove for the Newtonian three-body problem that there are no smooth homogeneous solutions to the critical Hamilton–Jacobi equation.

Ключевые слова: $N$-body problem, central configuration, Hamilton–Jacobi.

MSC: 70F10

Поступила в редакцию: 30.07.2013
Принята в печать: 23.10.2013

Язык публикации: английский

DOI: 10.1134/S1560354713060063



Реферативные базы данных:


© МИАН, 2025