RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2014, том 19, выпуск 3, страницы 363–373 (Mi rcd160)

Эта публикация цитируется в 8 статьях

Normal Form and Nekhoroshev Stability for Nearly Integrable Hamiltonian Systems with Unconditionally Slow Aperiodic Time Dependence

Alessandro Fortunati, Stephen Wiggins

School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom

Аннотация: The aim of this paper is to extend the result of Giorgilli and Zehnder for aperiodic time dependent systems to a case of nearly integrable convex analytic Hamiltonians. The existence of a normal form and then a stability result are shown in the case of a slow aperiodic time dependence that, under some smallness conditions, is independent of the size of the perturbation.

Ключевые слова: Hamiltonian systems, Nekhoroshev theorem, aperiodic time dependence.

MSC: 70H08, 37J25, 37J40

Поступила в редакцию: 12.12.2013
Принята в печать: 11.03.2014

Язык публикации: английский

DOI: 10.1134/S1560354714030071



Реферативные базы данных:


© МИАН, 2024