RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2014, том 19, выпуск 3, страницы 415–434 (Mi rcd163)

Эта публикация цитируется в 15 статьях

Superintegrable Generalizations of the Kepler and Hook Problems

Ivan A. Bizyaeva, Alexey V. Borisovabc, Ivan S. Mamaevad

a Udmurt State University, Universitetskaya 1, Izhevsk, 426034 Russia
b A. A. Blagonravov Mechanical Engineering Research Institute of RAS, Bardina str. 4, Moscow, 117334, Russia
c National Research Nuclear University “MEPhI”, Kashirskoye shosse 31, Moscow, 115409, Russia
d Institute of Mathematics and Mechanics of the Ural Branch of RAS, S. Kovalevskaja str. 16, Ekaterinburg, 620990, Russia

Аннотация: In this paper we consider superintegrable systems which are an immediate generalization of the Kepler and Hook problems, both in two-dimensional spaces — the plane $\mathbb{R}^2$ and the sphere $S^2$ — and in three-dimensional spaces $\mathbb{R}^3$ and $S^3$. Using the central projection and the reduction procedure proposed in [21], we show an interrelation between the superintegrable systems found previously and show new ones. In all cases the superintegrals are presented in explicit form.

Ключевые слова: superintegrable systems, Kepler and Hook problems, isomorphism, central projection, reduction, highest degree polynomial superintegrals.

MSC: 70H06, 70G10, 37J35

Поступила в редакцию: 27.03.2014
Принята в печать: 13.05.2014

Язык публикации: английский

DOI: 10.1134/S1560354714030095



Реферативные базы данных:


© МИАН, 2024