RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2013, том 18, выпуск 6, страницы 832–859 (Mi rcd171)

Эта публикация цитируется в 61 статьях

The Problem of Drift and Recurrence for the Rolling Chaplygin Ball

Alexey V. Borisovabc, Alexander A. Kilincab, Ivan S. Mamaevbac

a Institute of Computer Science, Udmurt State University, Universitetskaya 1, Izhevsk, 426034 Russia
b A. A. Blagonravov Mechanical Engineering Research Institute of RAS, Bardina str. 4, Moscow, 117334 Russia
c Institute of Mathematics and Mechanics of the Ural Branch of RAS, S. Kovalevskaja str. 16, Ekaterinburg, 620990 Russia

Аннотация: We investigate the motion of the point of contact (absolute dynamics) in the integrable problem of the Chaplygin ball rolling on a plane. Although the velocity of the point of contact is a given vector function of variables of the reduced system, it is impossible to apply standard methods of the theory of integrable Hamiltonian systems due to the absence of an appropriate conformally Hamiltonian representation for an unreduced system. For a complete analysis we apply the standard analytical approach, due to Bohl and Weyl, and develop topological methods of investigation. In this way we obtain conditions for boundedness and unboundedness of the trajectories of the contact point.

Ключевые слова: nonholonomic constraint, absolute dynamics, bifurcation diagram, bifurcation complex, drift, resonance, invariant torus.

MSC: 70E18, 37J60, 70K43, 37J15, 37J20

Поступила в редакцию: 19.09.2013
Принята в печать: 11.11.2013

Язык публикации: английский

DOI: 10.1134/S1560354713060166



Реферативные базы данных:


© МИАН, 2024