RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2014, том 19, выпуск 4, страницы 495–505 (Mi rcd176)

Эта публикация цитируется в 12 статьях

Birth of Discrete Lorenz Attractors at the Bifurcations of 3D Maps with Homoclinic Tangencies to Saddle Points

Sergey V. Gonchenkoa, Ivan I. Ovsyannikovab, Joan C. Tatjerc

a Nizhny Novgorod State University, pr. Gagarina 23, Nizhny Novgorod, 603000 Russia
b Imperial College London, SW7 2AZ, London, UK
c Dept. de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain

Аннотация: It was established in [1] that bifurcations of three-dimensional diffeomorphisms with a homoclinic tangency to a saddle-focus fixed point with the Jacobian equal to 1 can lead to Lorenz-like strange attractors. In the present paper we prove an analogous result for three-dimensional diffeomorphisms with a homoclinic tangency to a saddle fixed point with the Jacobian equal to 1, provided the quadratic homoclinic tangency under consideration is nonsimple.

Ключевые слова: Homoclinic tangency, rescaling, 3D Hénon map, bifurcation, Lorenz-like attractor.

MSC: 37C05, 37G25, 37G35

Поступила в редакцию: 11.04.2014
Принята в печать: 25.04.2014

Язык публикации: английский

DOI: 10.1134/S1560354714040054



Реферативные базы данных:


© МИАН, 2024