RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2014, том 19, выпуск 5, страницы 586–600 (Mi rcd184)

Эта публикация цитируется в 12 статьях

Persistence of Diophantine Flows for Quadratic Nearly Integrable Hamiltonians under Slowly Decaying Aperiodic Time Dependence

Alessandro Fortunati, Stephen Wiggins

School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom

Аннотация: The aim of this paper is to prove a Kolmogorov type result for a nearly integrable Hamiltonian, quadratic in the actions, with an aperiodic time dependence. The existence of a torus with a prefixed Diophantine frequency is shown in the forced system, provided that the perturbation is real-analytic and (exponentially) decaying with time. The advantage consists in the possibility to choose an arbitrarily small decaying coefficient consistently with the perturbation size.
The proof, based on the Lie series formalism, is a generalization of a work by A. Giorgilli.

Ключевые слова: Hamiltonian systems, Kolmogorov theorem, aperiodic time dependence.

MSC: 70H08, 37J40, 37J25

Поступила в редакцию: 07.05.2014
Принята в печать: 05.09.2014

Язык публикации: английский

DOI: 10.1134/S1560354714050062



Реферативные базы данных:


© МИАН, 2024