RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2014, том 19, выпуск 6, страницы 663–680 (Mi rcd190)

Эта публикация цитируется в 7 статьях

Continuation of the Exponentially Small Transversality for the Splitting of Separatrices to a Whiskered Torus with Silver Ratio

Amadeu Delshamsa, Marina Gonchenkob, Pere Gutiérreza

a Dep. de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
b Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, D-10623 Berlin, Germany

Аннотация: We study the exponentially small splitting of invariant manifolds of whiskered (hyperbolic) tori with two fast frequencies in nearly integrable Hamiltonian systems whose hyperbolic part is given by a pendulum. We consider a torus whose frequency ratio is the silver number $\Omega=\sqrt{2}-1$. We show that the Poincaré – Melnikov method can be applied to establish the existence of 4 transverse homoclinic orbits to the whiskered torus, and provide asymptotic estimates for the transversality of the splitting whose dependence on the perturbation parameter $\varepsilon$ satisfies a periodicity property. We also prove the continuation of the transversality of the homoclinic orbits for all the sufficiently small values of $\varepsilon$, generalizing the results previously known for the golden number.

Ключевые слова: transverse homoclinic orbits, splitting of separatrices, Melnikov integrals, silver ratio.

MSC: 37J40, 70H08

Поступила в редакцию: 16.09.2014
Принята в печать: 29.09.2014

Язык публикации: английский

DOI: 10.1134/S1560354714060057



Реферативные базы данных:


© МИАН, 2024