RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2014, том 19, выпуск 6, страницы 745–765 (Mi rcd196)

Эта публикация цитируется в 14 статьях

Invariant Manifolds at Infinity of the RTBP and the Boundaries of Bounded Motion

Regina Martíneza, Carles Simób

a Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra, Barcelona, Spain
b Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08007, Barcelona, Catalunya, Spain

Аннотация: Invariant manifolds of a periodic orbit at infinity in the planar circular RTBP are studied. To this end we consider the intersection of the manifolds with the passage through the barycentric pericenter. The intersections of the stable and unstable manifolds have a common even part, which can be seen as a displaced version of the two-body problem, and an odd part which gives rise to a splitting. The theoretical formulas obtained for a Jacobi constant C large enough are compared to direct numerical computations showing improved agreement when C increases. A return map to the pericenter passage is derived, and using an approximation by standard-like maps, one can make a prediction of the location of the boundaries of bounded motion. This result is compared to numerical estimates, again improving for increasing C. Several anomalous phenomena are described.

Ключевые слова: invariant rotational curves, separatrix maps, splitting function, restricted three-body problem.

MSC: 37N05, 70F07, 37E99

Поступила в редакцию: 20.10.2014
Принята в печать: 06.11.2014

Язык публикации: английский

DOI: 10.1134/S1560354714060112



Реферативные базы данных:


© МИАН, 2024