RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2015, том 20, выпуск 5, страницы 542–552 (Mi rcd20)

Эта публикация цитируется в 10 статьях

Invariant Measures of Modified $\mathrm{LR}$ and $\mathrm{L+R}$ Systems

Božidar Jovanović

Mathematical Institute SANU, Kneza Mihaila 36, 11000, Belgrade, Serbia

Аннотация: We introduce a class of dynamical systems having an invariant measure, the modifications of well-known systems on Lie groups: $\mathrm{LR}$ and $\mathrm{L+R}$ systems. As an example, we study a modified Veselova nonholonomic rigid body problem, considered as a dynamical system on the product of the Lie algebra $so(n)$ with the Stiefel variety $V_{n, r}$, as well as the associated $\epsilon\mathrm{L+R}$ system on $so(n) \times V_{n, r}$. In the $3$-dimensional case, these systems model the nonholonomic problems of motion of a ball and a rubber ball over a fixed sphere.

Ключевые слова: nonholonomic constraints, invariant measure, Chaplygin ball.

MSC: 37J60, 70F25, 70H45

Поступила в редакцию: 28.06.2015

Язык публикации: английский

DOI: 10.1134/S1560354715050032



Реферативные базы данных:


© МИАН, 2024