RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2016, том 21, выпуск 5, страницы 510–521 (Mi rcd200)

Эта публикация цитируется в 3 статьях

Connecting Orbits of Lagrangian Systems in a Nonstationary Force Field

Alexey V. Ivanov

Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg, 199034 Russia

Аннотация: We study connecting orbits of a natural Lagrangian system defined on a complete Riemannian manifold subjected to the action of a nonstationary force field with potential $U(q, t) = f(t)V (q)$. It is assumed that the factor $f(t)$ tends to $\infty$ as $t\to\pm\infty$ and vanishes at a unique point $t_{0} \in \mathbb{R}$. Let $X_{+}$, $X_{-}$ denote the sets of isolated critical points of $V(x)$ at which $U(x, t)$ as a function of $x$ distinguishes its maximum for any fixed $t > t_{0}$ and $t < t_{0}$, respectively. Under nondegeneracy conditions on points of $X_\pm$ we prove the existence of infinitely many doubly asymptotic trajectories connecting $X_{-}$ and $X_{+}$.

Ключевые слова: connecting orbits, homoclinic and heteroclinic orbits, nonautonomous Lagrangian system, variational method.

MSC: 37J45, 34C37, 70H03

Поступила в редакцию: 10.05.2016
Принята в печать: 09.08.2016

Язык публикации: английский

DOI: 10.1134/S1560354716050026



Реферативные базы данных:


© МИАН, 2024