RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2016, том 21, выпуск 5, страницы 522–530 (Mi rcd201)

Эта публикация цитируется в 6 статьях

Computing Hyperbolic Choreographies

Hadrien Montanelli

Oxford University Mathematical Institute, Oxford, OX2 6GG, UK

Аннотация: An algorithm is presented for numerical computation of choreographies in spaces of constant negative curvature in a hyperbolic cotangent potential, extending the ideas given in a companion paper [14] for computing choreographies in the plane in a Newtonian potential and on a sphere in a cotangent potential. Following an idea of Diacu, Pérez-Chavela and Reyes Victoria [9], we apply stereographic projection and study the problem in the Poincaré disk. Using approximation by trigonometric polynomials and optimization methods with exact gradient and exact Hessian matrix, we find new choreographies, hyperbolic analogues of the ones presented in [14]. The algorithm proceeds in two phases: first BFGS quasi-Newton iteration to get close to a solution, then Newton iteration for high accuracy.

Ключевые слова: choreographies, curved $n$-body problem, trigonometric interpolation, quasi-Newton methods, Newton’s method.

MSC: 70F10, 70F15, 70H12

Поступила в редакцию: 23.06.2016
Принята в печать: 18.08.2016

Язык публикации: английский

DOI: 10.1134/S1560354716050038



Реферативные базы данных:


© МИАН, 2024