RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2016, том 21, выпуск 5, страницы 556–580 (Mi rcd205)

Эта публикация цитируется в 26 статьях

The Spatial Problem of 2 Bodies on a Sphere. Reduction and Stochasticity

Alexey V. Borisov, Ivan S. Mamaev, Ivan A. Bizyaev

Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Аннотация: In this paper, we consider in detail the 2-body problem in spaces of constant positive curvature $S^2$ and $S^3$. We perform a reduction (analogous to that in rigid body dynamics) after which the problem reduces to analysis of a two-degree-of-freedom system. In the general case, in canonical variables the Hamiltonian does not correspond to any natural mechanical system. In addition, in the general case, the absence of an analytic additional integral follows from the constructed Poincaré section. We also give a review of the historical development of celestial mechanics in spaces of constant curvature and formulate open problems.

Ключевые слова: celestial mechanics, space of constant curvature, reduction, rigid body dynamics, Poincaré section.

MSC: 70F15, 01A85

Поступила в редакцию: 17.08.2016
Принята в печать: 13.09.2016

Язык публикации: английский

DOI: 10.1134/S1560354716050075



Реферативные базы данных:


© МИАН, 2024