RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2016, том 21, выпуск 5, страницы 581–592 (Mi rcd211)

Эта публикация цитируется в 8 статьях

The Integrable Case of Adler – van Moerbeke. Discriminant Set and Bifurcation Diagram

Pavel E. Ryabovabc, Andrej A. Oshemkovd, Sergei V. Sokolovb

a Moscow Institute of Physics and Technology (State University) Institutskiy per. 9, Dolgoprudny, Moscow Region, 141700 Russia
b Institute of Machines Science, Russian Academy of Sciences, Maly Kharitonyevsky Per. 4, Moscow, 101990 Russia
c Financial University, Leningradsky prosp. 49, Moscow, 125993 Russia
d Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991 Russia

Аннотация: The Adler – van Moerbeke integrable case of the Euler equations on the Lie algebra $so(4)$ is investigated. For the $L-A$ pair found by Reyman and Semenov-Tian-Shansky for this system, we explicitly present a spectral curve and construct the corresponding discriminant set. The singularities of the Adler – van Moerbeke integrable case and its bifurcation diagram are discussed. We explicitly describe singular points of rank 0, determine their types, and show that the momentum mapping takes them to self-intersection points of the real part of the discriminant set. In particular, the described structure of singularities of the Adler – van Moerbeke integrable case shows that it is topologically different from the other known integrable cases on $so(4)$.

Ключевые слова: integrable Hamiltonian systems, spectral curve, bifurcation diagram.

MSC: 70E05, 70E17, 37J35, 34A05

Поступила в редакцию: 29.08.2016
Принята в печать: 14.09.2016

Язык публикации: английский

DOI: 10.1134/S1560354716050087



Реферативные базы данных:


© МИАН, 2025